Scienza & Tecnologia (6 lettori)

franky1

Forumer storico

JWST-Abell-2744-NirCam.png

Due delle galassie più lontane mai osservate, catturate dal telescopio spaziale Jwst nelle regioni esterne del gigantesco ammasso di galassie Abell 2744. Le galassie, evidenziate da due piccoli quadrati indicati con i numeri 1 e 2, e in maggior dettaglio nei due riquadri centrali, non fanno parte dell'ammasso, ma si trovano a molti miliardi di anni luce al di là di esso. Oggi osserviamo queste galassie come apparivano rispettivamente 450 (nel riquadro 1, a sinistra nell’immagine) e 350 milioni di anni (nel riquadro 2, a destra) dopo il big bang. Crediti: Analisi scientifica: Nasa, Esa, Csa, Tommaso Treu (Ucla); elaborazione delle immagini: Zolt G. Levay (StSci)
 

franky1

Forumer storico
Artemis I – Flight Day Seven: Orion to Test Search Acquire and Track Mode, Exit Lunar Sphere of Influence


Artemis I – Flight Day Eight Update: Unexpected Loss of Communication with Orion is Restored

NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston unexpectedly lost data to and from the spacecraft at 12:09 a.m. CST for 47 minutes while reconfiguring the communication link between Orion and Deep Space Network overnight. The reconfiguration has been conducted successfully several times in the last few days, and the team is investigating the cause of the loss of signal. The team resolved the issue with a reconfiguration on the ground side. Engineers are examining data from the event to help determine what happened, and the command and data handling officer will be downlinking data recorded onboard Orion during the outage to include in that assessment. There was no impact to Orion, and the spacecraft remains in a healthy configuration.
 

franky1

Forumer storico
Artemis I – Flight Day Eight: Orion Exits the Lunar Sphere Of Influence

art001e000403-768x607.jpg

Nov. 22, 2022) Flight Day 7, Orion’s Optical Navigation camera captured the far side of the Moon, as the spacecraft orbited 81.1 miles above the surface, heading for a Distant Retrograde Orbit. Orion uses the optical navigation camera to capture imagery of the Earth and the Moon at different phases and distances, providing an enhanced body of data to certify its effectiveness under different lighting conditions as a way to help orient the spacecraft on future missions with crew.

On the eighth day of its mission, Orion continues to travel farther away from the Moon as it prepares to enter a distant retrograde orbit. The orbit is “distant” in the sense that it’s at a high altitude from the surface of the Moon, and it’s “retrograde” because Orion will travel around the Moon opposite the direction the Moon travels around Earth.


Orion exited the gravitational sphere of influence of the Moon Tuesday, Nov. 22, at 9:49 p.m. CST at a lunar altitude of 39,993 miles. The spacecraft will reach its farthest distance from the Moon Friday, Nov 25, just before performing the next major burn to enter the orbit. The distant retrograde orbit insertion burn is the second in a pair of maneuvers required to propel Orion into the highly stable orbit that requires minimal fuel consumption while traveling around the Moon.


NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston unexpectedly lost data to and from the spacecraft at 12:09 a.m. for 47 minutes while reconfiguring the communication link between Orion and Deep Space Network. Teams have resolved the issue, and the spacecraft remains in a healthy configuration while engineers analyze data to determine the cause.


While in transit to the distant retrograde orbit, engineers conducted the first part of the propellant tank slosh development flight test, called prop slosh, which is scheduled during quiescent, or less active, parts of the mission. The test calls for flight controllers to fire the reaction control system thrusters when propellant tanks are filled to different levels. Engineers measure the effect the propellant sloshing has on spacecraft trajectory and orientation as Orion moves through space. The test is performed after the outbound flyby burn and again after the return flyby burn to compare data at points in the mission with different levels of propellant onboard.


Propellant motion, or slosh, in space is difficult to model on Earth because liquid propellant moves differently in tanks in space than on Earth due to the lack of gravity. The reaction control thrusters are located on the sides of the service module in six sets of four. These engines are in fixed positions and can be fired individually as needed to move the spacecraft in different directions or rotate it into any position. Each engine provides about 50 pounds of thrust.


As of Wednesday, Nov. 23, a total of about 3,971 pounds of propellant has been used, about 147 pounds less than prelaunch expected values. There is more than 2,000 pounds of margin available over what is planned for use during the mission, an increase of about 74 pounds from prelaunch expected values.


Just after 1 p.m. CST on Nov. 23, Orion was traveling about 212,437 miles from Earth and was more than 48,064 miles from the Moon, cruising at 2,837 miles per hour.


To follow the mission real-time, you can track Orion during its mission around the Moon and back, view a live stream from Orion’s cameras, and find the latest imagery and videos on Flickr. The second episode of Artemis All Access is now available as a recap of the last few days of the mission with a look ahead to what’s coming next.
 

franky1

Forumer storico
Artemis I – Flight Day Nine: Orion One Day Away from Distant Retrograde Insertion

art001e000415-1024x768.jpg

On Flight Day 8, NASA’s Orion spacecraft remains two days away from reaching its distant retrograde orbit. The Moon is in view as Orion snaps a selfie using a camera mounted on one of its solar array at 10:57 p.m. EST..


Orion is now about one day away from entering into a distant retrograde orbit around the Moon. The orbit is “distant” in the sense that it’s at a high altitude approximately 50,000 miles from the surface of the Moon. Due to the distance, the orbit is so large that it will take the spacecraft six days to complete half of a revolution around the Moon before exiting the orbit for the return journey back to Earth.


During the last day in the transit to distant retrograde orbit, flight controllers performed a third in a series of planned star tracker development flight tests relative to the Sun, with a fourth planned for tomorrow. Star trackers are a navigation tool that measure the positions of stars to help the spacecraft determine its orientation. In the first three flight days, engineers evaluated initial data to understand star tracker readings correlated to thruster firings.


The spacecraft completed its sixth outbound trajectory correction burn at 3:52 p.m. CST, firing the European Service Module’s auxiliary engines for 17 seconds to propel the spacecraft at 8.9 feet per second. This is the final trajectory correction before entering distant retrograde orbit. When in lunar orbit, Orion will perform three orbital maintenance burns to keep the spacecraft on course.


Overnight, engineers will begin a 24-hour test of the reaction control system engines to evaluate engine performance for standard and non-standard thruster configurations. This test will provide data to inform procedures and ensure that the reaction control thrusters can control Orion’s orientation in an alternate configuration if there is an issue with the primary configuration.


Just after 1:42 p.m. CST on Nov. 24, Orion was traveling 222,993 miles from Earth and 55,819 miles from the Moon, cruising at 2,610 miles per hour.


NASA Television coverage of the distant retrograde orbit insertion burn, scheduled for 4:30 p.m. EST on Friday, Nov. 25. The burn is scheduled to take place at 4:52 p.m.


Images are sent down to Earth, and uploaded to NASA’s Johnson Space Center Flickr account and Image and Video Library. When bandwidth allows, views of the mission will be available in real-time via video stream.
 

Users who are viewing this thread

Alto